Source code for milvus.client.stub

import copy
import functools

from . import __version__
from .types import IndexType, MetricType
from .check import check_pass_param
from .grpc_handler import GrpcHandler
from .http_handler import HttpHandler
from .exceptions import ParamError, NotConnectError


def check_connect(f):
    @functools.wraps(f)
    def wrapper(self, *args, **kwargs):
        if not self.connected():
            raise NotConnectError('Please connect to the server first')

        return f(self, *args, **kwargs)

    return wrapper


[docs]class Milvus: def __init__(self, host=None, port=None, handler="GRPC", **kwargs): if handler == "GRPC": self._handler = GrpcHandler(host=host, port=port, **kwargs) elif handler == "HTTP": self._handler = HttpHandler(host=host, port=port, **kwargs) else: raise ParamError("Unknown handler options, please use \'GRPC\' or \'HTTP\'") def __enter__(self): self._handler.__enter__() return self def __exit__(self, exc_type, exc_val, exc_tb): self._handler.__exit__(exc_type, exc_val, exc_tb)
[docs] def set_hook(self, **kwargs): return self._handler.set_hook(**kwargs)
@property def status(self): return self._handler.status @property def handler(self): if isinstance(self._handler, GrpcHandler): return "GRPC" if isinstance(self._handler, HttpHandler): return "HTTP" return "NULL"
[docs] def connect(self, host=None, port=None, uri=None, timeout=1): """ Connects to the Milvus server. :type host: str :type port: str :type uri: str :type timeout: float :param host: (Optional) Ip address of the Milvus server. The default is `127.0.0.1`. :param port: (Optional) Port of the Milvus server. The default is `19530`. :param uri: (Optional) URI of the Milvus server. Only TCP is supported. The default is `tcp://127.0.0.1:19530`. :param timeout: (Optional) Connection timeout in milliseconds. The default is 3000. :return: Indicates whether the connection is successful. :rtype: Status :raises: NotConnectError """ return self._handler.connect(host, port, uri, timeout)
[docs] def connected(self): """ Checks whether the client is connected to the Milvus server. :return: Whether the client is connected to the Milvus server. :rtype: bool """ return self._handler.connected()
[docs] @check_connect def disconnect(self): """ Disconnects from the Milvus server. :return: Whether the client is disconnected from the Milvus server. :rtype: Status """ return self._handler.disconnect()
[docs] def client_version(self): """ Returns the version of the client. :return: Version of the client. :rtype: (str) """ return __version__
[docs] @check_connect def server_status(self, timeout=10): """ Returns the status of the Milvus server. :return: Status: Whether the operation is successful. str : Status of the Milvus server. :rtype: (Status, str) """ return self._cmd("status", timeout)
[docs] @check_connect def server_version(self, timeout=10): """ Returns the version of the Milvus server. :return: Status: Whether the operation is successful. str : Version of the Milvus server. :rtype: (Status, str) """ return self._cmd("version", timeout)
@check_connect def _cmd(self, cmd, timeout=10): check_pass_param(cmd=cmd) return self._handler._cmd(cmd, timeout)
[docs] @check_connect def create_collection(self, param, timeout=10): """ Creates a collection. :type param: dict :param param: Information needed to create a collection. `param={'collection_name': 'name', 'dimension': 16, 'index_file_size': 1024 (default), 'metric_type': Metric_type.L2 (default) }` :param timeout: Timeout in seconds. :type timeout: double :return: Whether the operation is successful. :rtype: Status """ if not isinstance(param, dict): raise ParamError('Param type incorrect, expect {} but get {} instead' .format(type(dict), type(param))) collection_param = copy.deepcopy(param) if 'collection_name' not in collection_param: raise ParamError('collection_name is required') collection_name = collection_param["collection_name"] collection_param.pop('collection_name') if 'dimension' not in collection_param: raise ParamError('dimension is required') dim = collection_param["dimension"] collection_param.pop("dimension") index_file_size = collection_param.get('index_file_size', 1024) collection_param.pop('index_file_size', None) metric_type = collection_param.get('metric_type', MetricType.L2) collection_param.pop('metric_type', None) check_pass_param(collection_name=collection_name, dimension=dim, index_file_size=index_file_size, metric_type=metric_type) return self._handler.create_table(collection_name, dim, index_file_size, metric_type, collection_param, timeout)
[docs] @check_connect def has_collection(self, collection_name, timeout=10): """ Checks whether a collection exists. :param collection_name: Name of the collection to check. :type collection_name: str :param timeout: Timeout in seconds. :type timeout: int :return: Status: indicate whether the operation is successful. bool if given collection_name exists """ check_pass_param(collection_name=collection_name) return self._handler.has_table(collection_name, timeout)
[docs] @check_connect def describe_collection(self, collection_name, timeout=10): """ Returns information of a collection. :type collection_name: str :param collection_name: Name of the collection to describe. :returns: (Status, table_schema) Status: indicate if query is successful table_schema: return when operation is successful :rtype: (Status, TableSchema) """ check_pass_param(collection_name=collection_name) return self._handler.describe_table(collection_name, timeout)
[docs] @check_connect def count_collection(self, collection_name, timeout=10): """ Returns the number of vectors in a collection. :type collection_name: str :param collection_name: target table name. :returns: Status: indicate if operation is successful res: int, table row count """ check_pass_param(collection_name=collection_name) return self._handler.count_table(collection_name, timeout)
[docs] @check_connect def show_collections(self, timeout=10): """ Returns information of all collections. :return: Status: indicate if this operation is successful collections: list of table names, return when operation is successful :rtype: (Status, list[str]) """ return self._handler.show_tables(timeout)
[docs] @check_connect def collection_info(self, collection_name, timeout=10): return self._handler.show_table_info(collection_name, timeout)
[docs] @check_connect def preload_collection(self, collection_name, timeout=None): """ Loads a collection for caching. :type collection_name: str :param collection_name: table to preload :returns: Status: indicate if invoke is successful """ check_pass_param(collection_name=collection_name) return self._handler.preload_table(collection_name, timeout)
[docs] @check_connect def drop_collection(self, collection_name, timeout=10): """ Deletes a collection by name. :type collection_name: str :param collection_name: Name of the table being deleted :return: Status, indicate if operation is successful :rtype: Status """ check_pass_param(collection_name=collection_name) return self._handler.drop_table(collection_name, timeout)
[docs] @check_connect def insert(self, collection_name, records, ids=None, partition_tag=None, params=None, timeout=-1): """ Insert vectors to a collection. :param ids: list of id :type ids: list[int] :type collection_name: str :param collection_name: collection name been inserted :type records: list[list[float]] `example records: [[1.2345],[1.2345]]` `OR using Prepare.records` :param records: list of vectors been inserted :type partition_tag: str or None. If partition_tag is None, vectors will be inserted to the collection rather than partitions. :param partition_tag: the tag string of a collection :type :type timeout: int :param timeout: time waiting for server response :returns: Status: indicate whether vectors are inserted successfully. ids: IDs of the inserted vectors. :rtype: (Status, list(int)) """ check_pass_param(collection_name=collection_name, records=records, ids=ids, partition_tag=partition_tag) if ids is not None and len(records) != len(ids): raise ParamError("length of vectors do not match that of ids") params = params or dict() if not isinstance(params, dict): raise ParamError("Params must be a dictionary type") return self._handler.insert(collection_name, records, ids, partition_tag, params, timeout)
[docs] @check_connect def get_vector_by_id(self, collection_name, vector_id, timeout=None): check_pass_param(collection_name=collection_name, ids=[vector_id]) return self._handler.get_vector_by_id(collection_name, vector_id, timeout=timeout)
[docs] @check_connect def get_vector_ids(self, collection_name, segment_name, timeout=None): check_pass_param(collection_name=collection_name) check_pass_param(collection_name=segment_name) return self._handler.get_vector_ids(collection_name, segment_name, timeout)
[docs] @check_connect def create_index(self, collection_name, index_type=None, params=None, timeout=None): """ Creates index for a collection. :param collection_name: Collection used to create index. :type collection_name: str :param index: index params :type index: dict index_param can be None `example (default) param={'index_type': IndexType.FLAT, 'nlist': 16384}` :param timeout: grpc request timeout. if `timeout` = -1, method invoke a synchronous call, waiting util grpc response else method invoke a asynchronous call, timeout work here :type timeout: int :return: Whether the operation is successful. """ _index_type = IndexType.FLAT if index_type is None else index_type check_pass_param(collection_name=collection_name, index_type=_index_type) params = params or dict() if not isinstance(params, dict): raise ParamError("Params must be a dictionary type") return self._handler.create_index(collection_name, _index_type, params, timeout)
[docs] @check_connect def describe_index(self, collection_name, timeout=10): """ Show index information of a collection. :type collection_name: str :param collection_name: table name been queried :returns: Status: Whether the operation is successful. IndexSchema: """ check_pass_param(collection_name=collection_name) return self._handler.describe_index(collection_name, timeout)
[docs] @check_connect def drop_index(self, collection_name, timeout=10): """ Removes an index. :param collection_name: target collection name. :type collection_name: str :return: Status: Whether the operation is successful. ::rtype: Status """ check_pass_param(collection_name=collection_name) return self._handler.drop_index(collection_name, timeout)
[docs] @check_connect def create_partition(self, collection_name, partition_tag, timeout=10): """ create a partition for a collection. :param collection_name: Name of the collection. :type collection_name: str :param partition_name: Name of the partition. :type partition_name: str :param partition_tag: Name of the partition tag. :type partition_tag: str :param timeout: time waiting for response. :type timeout: int :return: Status: Whether the operation is successful. """ check_pass_param(collection_name=collection_name, partition_tag=partition_tag) return self._handler.create_partition(collection_name, partition_tag, timeout)
[docs] @check_connect def show_partitions(self, collection_name, timeout=10): """ Show all partitions in a collection. :param collection_name: target table name. :type collection_name: str :param timeout: time waiting for response. :type timeout: int :return: Status: Whether the operation is successful. partition_list: """ check_pass_param(collection_name=collection_name) return self._handler.show_partitions(collection_name, timeout)
[docs] @check_connect def drop_partition(self, collection_name, partition_tag, timeout=10): """ Deletes a partition in a collection. :param collection_name: Collection name. :type collection_name: str :param partition_tag: Partition name. :type partition_tag: str :param timeout: time waiting for response. :type timeout: int :return: Status: Whether the operation is successful. """ check_pass_param(collection_name=collection_name, partition_tag=partition_tag) return self._handler.drop_partition(collection_name, partition_tag, timeout)
[docs] @check_connect def search(self, collection_name, top_k, query_records, partition_tags=None, params=None): """ Search vectors in a collection. :param collection_name: Name of the collection. :type collection_name: str :param top_k: number of vertors which is most similar with query vectors :type top_k: int :param nprobe: cell number of probe :type nprobe: int :param query_records: vectors to query :type query_records: list[list[float32]] :param partition_tags: tags to search :type partition_tags: list :return Status: Whether the operation is successful. result: query result :rtype: (Status, TopKQueryResult) """ check_pass_param(collection_name=collection_name, topk=top_k, records=query_records, partition_tag_array=partition_tags) params = params or dict() if not isinstance(params, dict): raise ParamError("Params must be a dictionary type") return self._handler.search(collection_name, top_k, query_records, partition_tags, params)
[docs] @check_connect def search_in_files(self, collection_name, file_ids, query_records, top_k, params=None): """ Searches for vectors in specific files of a collection. The Milvus server stores vector data into multiple files. Searching for vectors in specific files is a method used in Mishards. Obtain more detail about Mishards, see <a href="https://github.com/milvus-io/milvus/tree/master/shards"> :type collection_name: str :param collection_name: table name been queried :type file_ids: list[str] or list[int] :param file_ids: Specified files id array :type query_records: list[list[float]] :param query_records: all vectors going to be queried :param query_ranges: Optional ranges for conditional search. If not specified, search in the whole table :type top_k: int :param top_k: how many similar vectors will be searched :returns: Status: indicate if query is successful results: query result :rtype: (Status, TopKQueryResult) """ check_pass_param(collection_name=collection_name, topk=top_k, records=query_records) params = params or dict() if not isinstance(params, dict): raise ParamError("Params must be a dictionary type") return self._handler.search_in_files(collection_name, file_ids, query_records, top_k, params)
[docs] @check_connect def delete_by_id(self, collection_name, id_array, timeout=None): """ Deletes vectors in a collection by vector ID. """ check_pass_param(collection_name=collection_name, ids=id_array) return self._handler.delete_by_id(collection_name, id_array, timeout)
[docs] @check_connect def flush(self, collection_name_array=None): """ Flushes vector data in one collection or multiple collections to disk. """ if collection_name_array is None: return self._handler.flush([]) if not isinstance(collection_name_array, list): raise ParamError("Collection name array must be type of list") if len(collection_name_array) <= 0: raise ParamError("Collection name array is not allowed to be empty") for name in collection_name_array: check_pass_param(collection_name=name) return self._handler.flush(collection_name_array)
[docs] @check_connect def compact(self, collection_name, timeout=None): """ Compacts segments in a collection. """ check_pass_param(collection_name=collection_name) return self._handler.compact(collection_name, timeout)
[docs] @check_connect def get_config(self, parent_key, child_key): """ Gets Milvus configurations. """ cmd = "get_config {}.{}".format(parent_key, child_key) return self._cmd(cmd)
[docs] @check_connect def set_config(self, parent_key, child_key, value): """ Sets Milvus configurations. """ cmd = "set_config {}.{} {}".format(parent_key, child_key, value) return self._cmd(cmd)
# In old version of pymilvus, some methods are different from the new. # apply alternative method name for compatibility # get_collection_row_count = count_collection # delete_collection = drop_collection add_vectors = insert search_vectors = search search_vectors_in_files = search_in_files